4.8 Review

Linking freshwater ecotoxicity to damage on ecosystem services in life cycle assessment

Journal

ENVIRONMENT INTERNATIONAL
Volume 171, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2022.107705

Keywords

Species loss; Ecosystem functioning; Species diversity; Functional diversity; Chemical toxicity; Life cycle impact assessment

Ask authors/readers for more resources

Freshwater ecosystems face threats from chemical pollution, and there is a need for mechanistic models and frameworks to translate ecotoxicity data into damage on species diversity, functional diversity, and ecosystem services. This paper proposes an evaluation of available approaches to characterize the damage of chemical pollution on freshwater ecosystem services, and presents possible stepwise approaches to link ecotoxicity effects to species loss, functional diversity loss, and damage on ecosystem services. Harmonization of assumptions and boundary conditions is needed to integrate this pathway into life cycle assessment and other comparative frameworks.
Freshwater ecosystems provide major benefits to human wellbeing-so-called ecosystem services (ES)-but are currently threatened among others by ecotoxicological pressure from chemicals reaching the environment. There is an increased motivation to incorporate ES in quantification tools that support decision-making, such as life cycle assessment (LCA). However, mechanistic models and frameworks that can systematically translate eco-toxicity effect data from chemical tests into eventual damage on species diversity, functional diversity, and ES in the field are still missing. While current approaches focus on translating predicted ecotoxicity impacts to damage in terms of species loss, no approaches are available in LCA and other comparative assessment frameworks for linking ecotoxicity to damage on ecosystem functioning or ES.To overcome this challenge, we propose a way forward based on evaluating available approaches to char-acterize damage of chemical pollution on freshwater ES. We first outline an overall framework for linking freshwater ecotoxicity effects to damage on related ES in compliance with the boundary conditions of quanti-tative, comparative assessments. Second, within the proposed framework, we present possible approaches for stepwise linking ecotoxicity effects to species loss, functional diversity loss, and damage on ES. Finally, we discuss strengths, limitations, and data availability of possible approaches for each step.Although most approaches for directly deriving damage on ES from either species loss or damage to functional diversity have not been operationalized, there are some promising ways forward. The Threshold Indicator Taxa ANalysis (TITAN) seems suitable to translate predicted ecotoxicity effects to a metric of quantitative damage on species diversity. A Trait Probability Density Framework (TPD) approach that incorporates various functional diversity components and functional groups could be adapted to link species loss to functional diversity loss. An Ecological Production Function (EPF) approach seems most promising for further linking functional diversity loss to damage on ES flows for human wellbeing. However, in order to integrate the entire pathway from predicted freshwater ecotoxicity to damage on ES into LCA and other comparative frameworks, the approaches adopted for each step need to be harmonized in terms of assumptions, boundary conditions and consistent interfaces with each other.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available