4.6 Article

Chaos and Thermalization in the Spin-Boson Dicke Model

Journal

ENTROPY
Volume 25, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/e25010008

Keywords

quantum chaos; eigenstate thermalization hypothesis; quantum entanglement

Ask authors/readers for more resources

We analyze the relationship between chaos and thermalization onset in the spin-boson Dicke model. The eigenstate expectation values and distributions of off-diagonal elements validate the eigenstate thermalization hypothesis (ETH) in the chaotic region, indicating thermalization. The chaotic structure of the eigenstates is confirmed using von Neumann entanglement entropy and Shannon entropy.
We present a detailed analysis of the connection between chaos and the onset of thermalization in the spin-boson Dicke model. This system has a well-defined classical limit with two degrees of freedom, and it presents both regular and chaotic regions. Our studies of the eigenstate expectation values and the distributions of the off-diagonal elements of the number of photons and the number of excited atoms validate the diagonal and off-diagonal eigenstate thermalization hypothesis (ETH) in the chaotic region, thus ensuring thermalization. The validity of the ETH reflects the chaotic structure of the eigenstates, which we corroborate using the von Neumann entanglement entropy and the Shannon entropy. Our results for the Shannon entropy also make evident the advantages of the so-called efficient basis over the widespread employed Fock basis when investigating the unbounded spectrum of the Dicke model. The efficient basis gives us access to a larger number of converged states than what can be reached with the Fock basis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available