4.7 Review

A comprehensive review of primary strategies for tar removal in biomass gasification

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 276, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2022.116496

Keywords

Biomass; Gasification; Primary strategies; Tar removal; In situ catalysts; Reactor design

Ask authors/readers for more resources

In the current energy scenario, biomass gasification is considered a key technology for producing heat, power, and biofuels. However, the presence of high levels of tar in syngas poses challenges to the commercialization of biomass gasification technologies. This article provides a comprehensive overview of tar formation and elimination mechanisms, the adverse effects of tar, and tar analyzing techniques. It also summarizes the primary strategies for tar removal, including the impact of operation parameters, catalyst utilization, and reactor design on tar formation and elimination.
In the current energy scenario, the production of heat, power and biofuels from biomass has become of major interest. Amongst diverse thermochemical routes, gasification has stood out as a key technology for the largescale application of biomass. However, the development of biomass gasification is subjected to the efficient conversion of the biochar and the mitigation of troublesome by-products, such as tar. Syngas with high tar content can cause pipeline fouling, downstream corrosion, catalyst deactivation, as well as adverse impact on health and environment, which obstruct the commercialization of biomass gasification technologies. Since the reduction of tar formation is a key challenge in biomass gasification, a comprehensive overview is provided on the following aspects, which particularly include the definition and complementary classifications of tar, as well as possible tar formation and transformation mechanisms. Moreover, the adverse effects of tar on downstream applications, human health or environment, and tar analyzing techniques (online and off-line) are discussed. Finally, the primary tar removal strategies are summarized. In this respect, the effect of key operation parameters (temperature, ER and S/B), catalysts utilization (natural and supported metal catalysts) and the improvement of reactor design on tar formation and elimination was thoroughly analyzed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available