4.7 Article

Multi-agent deep reinforcement learning based distributed control architecture for interconnected multi-energy microgrid energy management and optimization

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 277, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2022.116647

Keywords

Multiagent deep reinforcement learning; Energy management; Energy Internet; Bottom-up; Distributed control

Ask authors/readers for more resources

This study proposes a distributed control scheme for the bottom-up architecture of the Energy Internet, utilizing a model-free/data-driven multiagent deep reinforcement learning method. An attention mechanism is added to the centralized critic to accelerate learning speed, and model predictive control is used to determine optimal power dispatching between energy routers and the main grid.
Environmental and climate change concerns are pushing the rapid development of new energy resources (DERs). The Energy Internet (EI), with the power-sharing functionality introduced by energy routers (ERs), offers an appealing alternative for DER systems. However, previous centralized control schemes for EI systems that follow a top-down architecture are unreliable for future power systems. This study proposes a distributed control scheme for bottom-up EI architecture. Second, model-based distributed control methods are not sufficiently flexible to deal with the complex uncertainties associated with multi-energy demands and DERs. A novel model-free/data-driven multiagent deep reinforcement learning (MADRL) method is proposed to learn the optimal operation strategy for the bottom-layer microgrid (MG) cluster. Unlike existing single-agent deep reinforcement learning methods that rely on homogeneous MG settings, the proposed MADRL adopts a form of decentralized execution, in which agents operate independently to meet local customized energy demands while preserving privacy. Third, an attention mechanism is added to the centralized critic, which can effectively accelerate the learning speed. Considering the bottom-layer power exchange request and the predicted electricity price, model predictive control of the upper layer determines the optimal power dispatching between the ERs and main grid. Simulations with other alternatives demonstrate the effectiveness of the proposed control scheme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available