4.7 Review

Minireview on Lattice Boltzmann Modeling of Gas Flow and Adsorption in Shale Porous Media: Progress and Future Direction

Journal

ENERGY & FUELS
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.2c03298

Keywords

-

Ask authors/readers for more resources

Shale gas reservoirs are an important unconventional resource with unique characteristics. The ultrasmall pore sizes in shale induce the nanopore confinement effect and gas adsorption. The lattice Boltzmann method (LBM) has been modified to simulate gas flow and adsorption in shale rocks, and four types of LBM models have been developed for this purpose. LBM can efficiently estimate shale gas permeability, describe pore-scale flow behaviors, and address the influence of gas adsorption, but challenges remain in its application for shale gas flow and adsorption simulations.
As an important unconventional resource, shale gas reservoirs have unique characteristics different from conventional oil and gas reservoirs. The ultrasmall pore sizes in shale induce the nanopore confinement effect on shale gas flow. In addition, shale rocks are rich in organic matter, which has strong interactions with gas molecules and results in gas adsorption. The lattice Boltzmann method (LBM) for micro- and nanoscale gas flow, which is originally designed for micro-electro-mechanical systems (MEMS), has been modified to simulate gas flow and adsorption in shale rocks. This work reviews four types of lattice Boltzmann models developed recently for shale gas flow/adsorption: (1) the slip-velocity-based LBM, (2) high-order LBM, (3) diffusion-based LBM, and (4) REV-scale LBM. Among these models, the slip-velocity-based LBM is widely used for shale gas modeling, which incorporates the slip boundary condition and Knudsen number (Kn)-determined relaxation time to simulate the nanopore confinement effect. To model the gas adsorption, the fluid-solid interaction force is introduced into the model, and the magnitude of this interaction force is usually obtained from the molecular level simulations. LBMs have been regarded as an efficient numerical tool to estimate the shale gas apparent permeability, to describe the pore-scale flow behaviors, and to address the influence of gas adsorption on shale gas storage and transport. Nevertheless, some challenges exist in current applications of LBMs for shale gas flow and adsorption simulations that are discussed in this minireview as well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available