4.7 Article

Energy, exergy and economic analysis of ceramic foam-enhanced molten salt as phase change material for medium- and high-temperature thermal energy storage

Journal

ENERGY
Volume 262, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.125462

Keywords

Energy; exergy; economic analysis; Pore configuration; Ceramic foam; Molten salt; Melting; Thermal energy storage

Ask authors/readers for more resources

This study conducted a comprehensive analysis on the energy, exergy, and economic aspects of using ceramic foam/molten salt composite phase change material (CPCM) for medium-and high-temperature thermal energy storage systems. The results showed that the melting rate and energy storage rate were significantly improved with the use of ceramic foam-enhanced molten salt. The exergy efficiency of CPCMs was also higher than that of pure PCM. Additionally, the economic analysis indicated the feasibility of CPCMs with certain porosities within a certain price range. This study is of great importance for the large-scale application of ceramic foam in thermal energy storage.
This study carried out comprehensive energy, exergy and economic analysis of ceramic foam/molten salt composite phase change material (CPCM) for use in medium-and high-temperature thermal energy storage systems. Ceramic foams with various pore configurations were fabricated and integrated with molten salt. A visualised experimental setup was built and a numerical model was developed to experimentally and numerically investigate the melting performance of ceramic foam-enhanced molten salt. It is found that compared to pure PCM, the melting rate of 10 PPI (Pores Per Inch), 15 PPI and 20 PPI CPCMs is increased by 51.5%, 51.5% and 39.4% respectively. Moreover, the porosity has a more remarkable effect on the enhancement in melting rate than pore density. The total stored energy is slightly decreased but the energy storage rate is greatly improved. The energy storage rate of CPCM with 0.80 porosity is increased by 73.2%. Exergy analysis indicates that the exergy efficiency of all CPCMs is more than 50% higher than that of pure PCM. At the benchmark price of ceramic foam, CPCMs with 0.80 and 0.85 porosities are economically feasible. The effective thermal energy stored per unit time and unit price can be increased by up to 58.0% and CPCMs with low porosity are more cost-effective. This study provides a comprehensive evaluation of ceramic foam in terms of enhancing the heat transfer performance of molten salt for the potential large-scale applications in medium-and high-temperature thermal energy storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available