4.7 Article

Exposure to an environmentally relevant concentration of 17?-ethinylestradiol disrupts craniofacial development of juvenile zebrafish

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 251, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2023.114541

Keywords

Endocrine disruptors; Craniofacial abnormalities; Oestrogen exposure; Zebrafish

Ask authors/readers for more resources

Endocrine disrupting chemicals (EDCs) can interfere and disrupt hormone signalling necessary for various developmental pathways by interacting with native hormone receptors. These chemicals are pervasive in our environment, particularly in our waterways, making aquatic wildlife highly vulnerable to their effects. Many EDCs can bind to and activate oestrogen receptors, leading to aberrant oestrogen signalling.
Endocrine disrupting chemicals (EDCs) can interact with native hormone receptors to interfere with and disrupt hormone signalling that is necessary for a broad range of developmental pathways. EDCs are pervasive in our environment, in particular in our waterways, making aquatic wildlife especially vulnerable to their effects. Many of these EDCs are able to bind to and activate oestrogen receptors, causing aberrant oestrogen signalling. Craniofacial development is an oestrogen-sensitive process, with oestrogen receptors expressed in chondrocytes during critical periods of development. Previous studies have demonstrated a negative effect of high concen-trations of oestrogen on early craniofacial patterning in the aquatic model organism, the zebrafish (Danio rerio). In order to determine the impacts of exposure to an oestrogenic EDC, we exposed zebrafish larvae and juveniles to either a high concentration to replicate previous studies, or a low, environmentally relevant concentration of the oestrogenic contaminant, 17 alpha-ethinylestradiol. The prolonged / chronic exposure regimen was used to replicate that seen by many animals in natural waterways. We observed changes to craniofacial morphology in all treatments, and most strikingly in the larvae-juveniles exposed to a low concentration of EE2. In the present study, we have demonstrated that the developmental stage at which exposure occurs can greatly impact phenotypic outcomes, and these results allow us to understand the widespread impact of oestrogenic endocrine disruptors. Given the conservation of key craniofacial development pathways across vertebrates, our model can further be applied in defining the risks of EDCs on mammalian organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available