4.4 Article

Light alters activity but does not disturb tandem coordination of termite mating pairs

Journal

ECOLOGICAL ENTOMOLOGY
Volume 48, Issue 2, Pages 145-153

Publisher

WILEY
DOI: 10.1111/een.13209

Keywords

circadian rhythm; mate search; phototaxis; social insects; tandem run

Categories

Ask authors/readers for more resources

Termites adjust their speed during tandem runs to form stable pairs and efficiently reunite after separation. However, their response to light varies depending on the species and lighting conditions.
Group-living animals coordinate their movements via local interactions, which can be mediated by visual, tactile, and chemical communication channels. Termite mating pairs form tandems with one male imago following one female imago in a synchronised way to explore the environment and search for a nesting site. Imagoes are the only developmental stage with compound eyes in termites, but the role of vision during tandem runs remains unknown. Here, we investigate the movements during tandem runs of two termite species, Coptotermes formosanus, which swarms during the night, and Reticulitermes speratus, which swarms during the day. We performed the experiments with light and in complete darkness. We found that females and males of both species adjust their speed to each other to form a stable tandem and reunite efficiently upon separation, with or without light. However, the activity was dependent on light conditions in the diurnal R. speratus, in which termites were more active with light. On the other hand, the nocturnal C. formosanus was mostly insensitive to light environments, with termites being slightly more active in darkness. Our results suggest that termites can use light as an environmental cue to start forming mating pairs but not as means to locate mates or coordinate their movements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available