4.6 Article

Prenatal Alcohol Exposure Alters Fetal Iron Distribution and Elevates Hepatic Hepcidin in a Rat Model of Fetal Alcohol Spectrum Disorders

Journal

JOURNAL OF NUTRITION
Volume 146, Issue 6, Pages 1180-1188

Publisher

OXFORD UNIV PRESS
DOI: 10.3945/jn.115.227983

Keywords

fetal alcohol spectrum disorders; iron deficiency; hepcidin; neurodevelopment; pregnancy

Funding

  1. NIH [F32 AA21311, R01 AA22999, R37 AA11085]

Ask authors/readers for more resources

Background: Prenatal alcohol exposure (PAE) causes neurodevelopmental disabilities, and gestational iron deficiency (ID) selectively worsens learning and neuroanatomical and growth impairments in PAE. It is unknown why ID worsens outcomes in alcohol-exposed offspring. Objective: We hypothesized that PAE alters maternal-fetal iron distribution or its regulation. Methods: Nulliparous, 10-wk-old, Long-Evans rats were mated and then fed iron-sufficient (100 mg Fe/kg) or iron-deficient (<= 4 mg Fe/kg) diets. On gestational days 13.5-19.5, dams received either 5.0 g ethanol/kg body weight (PAE) or isocaloric maltodextrin by oral gavage. On gestational day 20.5, maternal and fetal clinical blood counts, tissue mineral and iron transport protein concentrations, and hepatic hepcidin mRNA expression were determined. Results: In fetal brain and liver (P < 0.001) and in maternal liver (P < 0.005), ID decreased iron (total and nonheme) and ferritin content by nearly 200%. PAE reduced fetal bodyweight (P < 0.001) and interacted with ID (P < 0.001) to reduce it by an additional 20%. Independent of maternal iron status, PAE increased fetal liver iron (30-60%, P < 0.001) and decreased brain iron content (total and nonheme, 15-20%, P <= 0.050). ID-PAE brains had lower ferritin, transferrin, and transferrin receptor content (P <= 0.002) than ID-maltodextrin brains. PAE reduced fetal hematocrit, hemoglobin, and red blood cell numbers (P < 0.003) independently of iron status. Unexpectedly, and also independent of iron status, PAE increased maternal and fetal hepatic hepcidin mRNA expression >300% (P < 0.001). Conclusions: PAE altered fetal iron distribution independent of maternal iron status in rats. The elevated iron content of fetal liver suggests that PAE may have limited iron availability for fetal erythropoiesis and brain development. Altered fetal iron distribution may partly explain why maternal ID substantially worsens growth and behavioral outcomes in PAE.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available