4.6 Review

Plastic homogeneity in nanoscale heterostructured binary and multicomponent metallic eutectics: An overview

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cossms.2022.101055

Keywords

Dislocation; Slip transmission; Eutectic; Heterostructured materials; Plasticity

Ask authors/readers for more resources

Heterostructured materials composed of nanoscale phases can enhance both yield strength and strain hardening, leading to uniform distribution of plastic flow. Deformation mechanisms in nanoscale eutectic binary systems enable slip transmission and interface-enabled plasticity, explaining the strength-ductility relationship and distributed plastic flow in multi-component eutectics.
Heterostructured materials comprised of relatively soft/hard disparate phases typically exhibit composite strengthening but lack plastic deformability at ambient temperatures. However, heterostructured systems comprised of nanoscale phases can simultaneously enhance yield strength and strain hardening, thereby pro-moting uniform distribution of plastic flow. In this review, the atomic-scale deformation mechanisms in model systems of eutectic alloys, Al-Al2Cu and Al-Si, refined to nanoscales via laser rapid solidification are discussed, and compared with literature on multi-component (high entropy) eutectics such as Ni-Al-Fe-based with Cr and/ or Co additions. The nano-lamellar Al-Al2Cu structures exhibit unit defect mechanisms not reported in mono-lithic Al2Cu intermetallic: localized shear on {011} and shear-induced faults on {121} planes, constrained by closely-spaced dislocation arrays in Al confined by Al/Al2Cu interfaces. The unexpected plasticity mechanisms are enabled by slip continuity in nanoscale Al-Al2Cu eutectics associated with the orientation relationship and interface habit planes. In nano-fibrous Al-Si eutectic, tensile ductility at strength approaching 600 MPa is observed resulting from dislocation plasticity in the nano-Al channels and cracking in Si nanofibers. Molecular dynamics simulations show that Al dislocations easily cross-slip (screw) or climb (edge) along Al-Si interfaces, making slip transmission difficult. The propagation of nano-cracks is suppressed by surrounding strain hardening Al, retaining good ductility of the sample, in spite of lack of direct slip transmission. The critical unit mechanisms of slip transmission and interface-enabled plasticity observed in nanoscale eutectic binary systems can also explain the strength-ductility relationship in multi-component eutectics and homogeneously distributed plastic flow with increasing microstructural heterogeneity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available