4.7 Article

A temperature dependent constitutive model for hybrid fibre reinforced concrete

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 365, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2022.130109

Keywords

Hybrid fibre reinforced concrete; Constitutive model; High temperature; Empirical equation

Ask authors/readers for more resources

In this study, a constitutive model is developed to simulate the behavior of hybrid fiber reinforced concrete (HFRC) under fire conditions. Empirical equations are proposed to calibrate the relationship between the mechanical properties of HFRC and temperature, considering various influencing factors. The effectiveness and accuracy of the model are validated by comparing simulation results with test data.
The use of fibre reinforced concrete (FRC) in engineering constructions has attracted increasing attention due to its excellent performance, including its improved strength, toughness, impact resistance and fire resistance. In recent years, hybrid fibres have been used in FRC to obtain better performance. To provide a reliable predicting tool and promote the application of hybrid fibre reinforced concrete (HFRC), a constitutive model is developed in this study to mimic the behaviour of HFRC under fire condition. The governing equations of damage function and strength envelope are modified in the new model. To calibrate the relationship between the mechanical prop-erties of HFRC and temperature, a series of empirical equations are proposed. The effects of various influencing factors are considered, including fibre type, fibre shape, fibre dosage, water-binder ratio, moisture content and chemical composition. The effectiveness and accuracy of the proposed model is validated by comparing the simulation results with the test data from literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available