4.7 Article

3D-MedTranCSGAN: 3D Medical Image Transformation using CSGAN

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 153, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.106541

Keywords

Computer vison; 3DCascadeNet; PatchGAN; CSGAN; 3D UNet; Medical image transformation

Ask authors/readers for more resources

This paper proposes a CSGAN model called 3D-MedTranCSGAN for 3D medical image transformation. The model utilizes PatchGAN discriminator network to penalize the difference between the synthesized image and the original image, and computes non-adversary loss functions. Experimental results show that the proposed model outperforms other transformation methods in various tasks.
Computer vision techniques are a rapidly growing area of transforming medical images for various specific medical applications. In an end-to-end application, this paper proposes a 3D Medical Image Transformation Using a CSGAN model named a 3D-MedTranCSGAN. The 3D-MedTranCSGAN model is an integration of non -adversarial loss components and the Cyclic Synthesized Generative Adversarial Networks. The proposed model utilizes PatchGAN's discriminator network, to penalize the difference between the synthesized image and the original image. The model also computes the non-adversary loss functions such as content, perception, and style transfer losses. 3DCascadeNet is a new generator architecture introduced in the paper, which is used to enhance the perceptiveness of the transformed medical image by encoding-decoding pairs. We use the 3D-Med-TranCSGAN model to do various tasks without modifying specific applications: PET to CT image transformation; reconstruction of CT to PET; modification of movement artefacts in MR images; and removing noise in PET images. We found that 3D-MedTranCSGAN outperformed other transformation methods in our experiments. For the first task, the proposed model yields SSIM is 0.914, PSNR is 26.12, MSE is 255.5, VIF is 0.4862, UQI is 0.9067 and LPIPs is 0.2284. For the second task, the model yields 0.9197, 25.7, 257.56, 0.4962, 0.9027, 0.2262. For the third task, the model yields 0.8862, 24.94, 0.4071, 0.6410, 0.2196. For the final task, the model yields 0.9521, 33.67, 33.57, 0.6091, 0.9255, 0.0244. Based on the result analysis, the proposed model outperforms the other techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available