4.7 Article

In vitro and in silico perspectives to explain anticancer activity of a novel syringic acid analog ((4-(1H-1, 3-benzodiazol-2-yl)-2, 6-dimethoxy phenol)) through apoptosis activation and NFkB inhibition in K562 leukemia cells

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 152, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2022.106349

Keywords

Syringic acid; Carcinogenesis; K562 cells; NFkB; Docking; Simulation

Ask authors/readers for more resources

A chemically synthesized novel SA analog (SA10) was evaluated for its anticancer activity. The results showed that SA10 exhibited higher inhibition than SA in K562 cells. Molecular docking and simulation revealed that SA10 had stronger binding affinity to NFkB and interfered with its association with DNA. SA10 demonstrated more robust NFkB inhibitory activity and could be a potential therapeutic NFkB inhibitor for treating cancers.
Syringic acid (SA) is an active carcinogenesis inhibitor; however, the low bioavailability and unstable functional groups hinder its activity. Here, a chemically synthesized novel SA analog (SA10) is evaluated for its anticancer activity using in-vitro and in-silico studies. K562 cell line study revealed that SA10 had shown a higher rate of inhibition (IC50 = 50.40 mu g/mL) than its parental compound, SA (IC50 = 96.92 mu g/mL), at 50 mu M concentration. The inhibition ratio was also been evaluated by checking the expression level of NFkB and Bcl-2 and showing that SA10 has two-fold increase in the inhibitory mechanism than SA. This result demonstrates that SA10 acts as an NFkB inhibitor and an apoptosis inducer. Further, molecular docking and simulation have been performed to get insights into the possible inhibitory mechanism of SA and SA10 on NFkB at the atomistic level. The molecular docking results exemplify that both SA and SA10 bind to the active site of NFkB, thereby interfering with the association between DNA and NFkB. SA10 exhibits a more robust binding affinity than SA and is firmly docked well into the interior of the NFkB, as confirmed by MM-PBSA calculations. In a nutshell, the Benzimidazole scaffold containing SA10 has shown more NFkB inhibitory activity in K562 cells than SA, which could be helpful as an ideal therapeutic NFkB inhibitor for treating cancers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available