4.7 Article

Microscopic mechanism analysis of influence of high effective confining pressure on mechanical properties of hydrate-bearing sediments

Journal

COMPUTERS AND GEOTECHNICS
Volume 152, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2022.105011

Keywords

Methane hydrate-bearing sediment; High effective confining pressure; Particle breakage; Repolymerization effect of hydrate; Discrete element method

Funding

  1. National Outstanding Youth Science Fund Project of the National Natural Science Foundation of China [51722801]

Ask authors/readers for more resources

It was discovered in tests that the increase in effective confining pressure could have a great impact on the mechanical behavior of hydrate-bearing sediment, which was not only decreased the internal friction angle and dilatancy, but also enhanced cohesion and strength. Significant crushing of the hydrate-host sand was founded after shearing under high pressure. In this study, a discrete element method (DEM) model considering the effects of particle breakage and hydrate repolymerization was proposed, and a series of numerical triaxial tests were performed to shed light on the mechanism of mechanical properties evolution observed in the physical tests. The numerical results revealed that the breakage of host particles was a leading cause of the decrease in the internal friction angle and transformation from shear dilation to contraction. As the hydrate saturation, axial strain, and effective confining pressure increased, the force chain network of the model became denser and the force magnitude on the chains became increasingly uniform, which leads to the increase in model strength; the number and force of bonded contact also increased gradually, resulting in increased cohesion on the macro scale.
It was discovered in tests that the increase in effective confining pressure could have a great impact on the mechanical behavior of hydrate-bearing sediment, which was not only decreased the internal friction angle and dilatancy, but also enhanced cohesion and strength. Significant crushing of the hydrate-host sand was founded after shearing under high pressure. In this study, a discrete element method (DEM) model considering the effects of particle breakage and hydrate repolymerization was proposed, and a series of numerical triaxial tests were performed to shed light on the mechanism of mechanical properties evolution observed in the physical tests. The numerical results revealed that the breakage of host particles was a leading cause of the decrease in the internal friction angle and transformation from shear dilation to contraction. As the hydrate saturation, axial strain, and effective confining pressure increased, the force chain network of the model became denser and the force magnitude on the chains became increasingly uniform, which leads to the increase in model strength; the number and force of bonded contact also increased gradually, resulting in increased cohesion on the macro scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available