4.5 Article

First principles prediction of the Al-Li phase diagram including configurational and vibrational entropic contributions

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 217, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.commatsci.2022.111898

Keywords

Al-Li alloys; Prediction of phase diagrams; Lattice vibration; First principles calculations; Cluster expansion

Ask authors/readers for more resources

The whole Al-Li phase diagram is accurately predicted from first principles calculations and statistical mechanics, taking into account the effect of configurational and vibrational entropy. The predicted phase diagram shows excellent agreement with the experimental results in terms of stable and metastable phases, phase boundaries, and maximum stability temperature of line compounds. The methodology demonstrates that accurate phase diagrams of technologically important alloys can be obtained from first principles calculations.
The whole Al-Li phase diagram is predicted from first principles calculations and statistical mechanics including the effect of configurational and vibrational entropy. The formation enthalpy of different configurations at different temperatures was accurately predicted by means of cluster expansions that were fitted from first principles calculations. The vibrational entropic contribution of each configuration was determined from the bond length vs. bond stiffness relationships for each type of bond and the Gibbs free energy of the different phases was obtained as a function of temperature from Monte Carlo simulations. The predicted phase diagram was in excellent agreement with the currently accepted experimental one in terms of the stable (AlLi, Al2Li3, AlLi2, Al4Li9) and metastable (Al3Li) phases, of the phase boundaries between them and of the maximum stability temperature of line compounds. In addition, it provided accurate information about the gap between Al3Li and AlLi solvus lines. Finally, the influence of the vibrational entropy on the correct prediction of the phase diagram is discussed. Overall, the methodology shows that accurate phase diagrams of alloys of technological interest can be predicted from first principles calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available