4.7 Article

Impact of nitrite and oxygen on nitrous oxide emissions from a granular sludge sequencing batch reactor

Journal

CHEMOSPHERE
Volume 308, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.136378

Keywords

Aerobic granular sludge; Greenhouse gas emissions; Nitrous oxide; Nutrient removal; Wastewater treatment

Ask authors/readers for more resources

This study investigates the impact of dissolved oxygen and nitrite concentrations on nitrous oxide (N2O) emissions in wastewater treatment and provides strategies for meeting potential gaseous emission permits. The results show that higher dissolved oxygen and nitrite concentrations are associated with higher N2O emissions, and the lowest emissions are observed at a dissolved oxygen concentration of 1 mg L-1.
Maximizing nutrient removal and minimizing greenhouse gas (GHG) emissions is imperative for the future of wastewater treatment. As municipalities focus on minimizing their carbon footprints, future permits could regulate GHG emissions from wastewater treatment plants. This study investigates how nitrous oxide (N2O) emissions are affected by dissolved oxygen and nitrite concentrations, providing potential strategies to meet possible gaseous emission permits. A lab-scale sequencing batch reactor (SBR) was enriched with aerobic granular sludge (AGS) capable of phosphate removal and simultaneous nitrification-denitrification (SND). N2O emissions were tracked at varying dissolved oxygen (DO) and nitrite (NO2- ) concentrations, with >99% SND efficiency and 93%-100% phosphate removal efficiency. Higher DO and NO2- concentrations were associated with higher N2O emissions. Emissions were minimized at a DO concentration of 1 mg L-1, with an average emission factor of 0.18% of oxidized NH3-N emitted as N2O-N, which is lower than factors from many full-scale treatment plants (Vasilaki et al., 2019) and similar to a Nereda (R) full-scale AGS SBR (van Dijk et al., 2021). This challenges assertions that AGS emits more N2O than conventional activated sludge, although more research at full-scale with influent quality variations is required to confirm this trend. Molecular analyses revealed that the efficient SND was likely achieved with shortcut nitrogen removal facilitated by a low presence of nitrite oxidizing bacteria and a large population of denitrifying phosphate accumulating organisms, which far outnumbered denitrifying glycogen accumulating organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available