4.7 Article

Photoreduction behavior of Cr(VI) on oxidized carbon nanoparticles: From photocatalytic efficiency to oxygenated groups

Journal

CHEMOSPHERE
Volume 311, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.137136

Keywords

Cr(VI) sequestration; Photocatalytic mechanism; Oxygenated groups; Photocatalytic efficiency

Ask authors/readers for more resources

Clarifying the reaction process and specific mechanism between variable-valence elements and oxidized carbon nanoparticles is crucial for evaluating the environmental impact of carbon nanomaterials. In this study, the photocatalytic reduction of Cr(VI) on oxidized carbon nanotubes (OCNTs), oxidized graphene ribbons (OGRs), and graphene oxide sheets (GOs) was investigated. The results showed that the photocatalytic activity of the oxidized carbon nanoparticles strongly depended on the number of oxygenated groups present, with GOs exhibiting the highest efficiency.
Clarifying the reaction process and specific mechanism between variable-valence elements and oxidized carbon nanoparticles is essential to evaluate the environmental impact of carbon nanomaterials. In this study, the photocatalytic reduction of Cr(VI) on oxidized carbon nanotubes (OCNTs), oxidized graphene ribbons (OGRs), and graphene oxide sheets (GOs) was explored by batch experiments and spectroscopic analyses. The reaction efficiencies strongly depended on the number of oxygenated groups in the oxidized carbon nanoparticles. The abundant oxygenated groups enabled the GOs to exhibit the highest photocatalytic activity, followed by the OGRs and OCNTs. As a result, the photoreduction efficiency of Cr(VI) reached 96% for GOs, whereas those of OGRs and OCNTs were only 40% and 13%, respectively. In addition, different types of oxygenated groups exhibited various activities based on molecular model tests, following the sequence carboxylic > hydroxyl > carbonyl > ether > aldehyde > edge. Based on the underlying relationship between the oxygenated groups, topological structures, and mechanical strain in the carbon nanoparticles, we speculate that mechanical strain plays a critical role in the formation of oxygenated groups, thereby regulating their photocatalytic activities. The findings in this work provide novel insights into the roles of oxygenated groups and the mechanical strain of carbon nanoparticles in their environmental behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available