4.7 Article

Carbon supported Pd based catalysts for the hydrolytic dehydrogeneration of morpholine borane

Journal

CHEMOSPHERE
Volume 309, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.136674

Keywords

Hydrogen production; Morpholine borane; PdNi; C; Sodium borohydride; Chemical reduction; Catalyst

Funding

  1. DEU-BAP
  2. [2021.KB.FEN.040]

Ask authors/readers for more resources

This study investigates the catalyst efficiency of morpholine borane in hydrogen production and discovers that Pd50Ni50/C nanoparticles have excellent catalytic behavior and high reusability.
Although the reducing property of morpholine borane is frequently used, there are few studies on its use as a chemical hydrogen storage material. This study presents the catalyst efficiency for hydrogen production in the dehydrogenation reaction of morpholine borane as efficient and cost-effective hydrogen storage material, which can be used as an alternative to depleting fossil fuels. It was studied with four different catalysts as activated Carbon-supported Pd, PdAg, PdNi, and PdCo. Bimetallic palladium based catalysts were used for the dehydro-genation of morpholine borane for the first time. Nanoparticles were synthesized using the chemical reduction method. The catalytic effects of different metal ratios of PdNi/C nanoparticles, which were concluded to have the best catalyst effect, were investigated and it was observed that the ratio of Pd50Ni50/C nanoparticles exhibited better catalytic behavior, and optimization studies were carried out with Pd50Ni50/C nanoparticles. Transmission Electron Microscopy, X-Ray Diffraction, and X-Ray Photoelectron Spectroscopy analyzes were performed for the characterization of nanoparticles. According to the characterization analyzes of Pd50Ni50/C nanoparticles, the mean particle size was determined as 2.0 +/- 1.0 nm. Catalyst efficiency was determined by performing the substrate, catalyst, and temperature experiments separately in the dehydrogenation reaction of Morpholine Borane. These parameters are respectively; Ea and Delta H were calculated as 93.2 kJ/mol, and 90.6 kJ/mol. The reusability experiments were carried out in 4 cycles. In other words, with this study, it was concluded that the reusability of Pd50Ni50/C nanoparticles synthesized by the chemical method is high and their catalytic activity is excellent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available