4.7 Article

Ecotoxicological characteristics and properties of zinc-modified biochar produced by different methods

Journal

CHEMOSPHERE
Volume 315, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.137690

Keywords

Metal; Pre-pyrolysis; Post-pyrolysis; Toxicity; Modification

Ask authors/readers for more resources

This study aims to evaluate the ecotoxicological effects of different methods of zinc-modified biochar (BC-Zn). Invertebrates (Folsomia candida, Daphnia magna) and bacteria (Aliivibrio fischeri) were used to assess the toxicity of different BC-Zn treatments. The post-treated and calcined composites had higher levels of total polycyclic aromatic hydrocarbons (C-tot PAHs) compared to the pre-modified BC-Zn, but they had limited impact on the luminescence activity of bacteria.
Despite the dynamic progress of BC engineering, there is a lack of knowledge on the toxicity and environmental impact of modified BC. The aim of this study was the ecotoxicological evaluation of BC modified with zinc (Zn) using different methods: impregnation of feedstock with Zn before pyrolysis (PR), impregnation with Zn after pyrolysis (PS) and impregnation with Zn after pyrolysis with an additional calcination step (PST). The ecotoxicological assessment was based on tests with invertebrates (Folsomia candida, Daphnia magna) and bacteria (Aliivibrio fischeri). The post-treated and calcined composites had a higher content of total (C-tot) PAHs (144-276 mu g kg(-1)) than pre-treated BC-Zn (68-157 mu g kg(-1)). All BC-Zn treatments stimulated the reproduction of F. candida at the lowest BC dose (0.5%) by 4-24%. Increasing the biochar dose to 1% and 3% retained the stimulating effect of the pre-modified biochars (from 19 to 41%). Pre-modified BC-Zn reduced the luminescence of A. fischeri from 40% to 80%. Post-treated BCs reduced bacterial luminescence by 99%, but the calcination step limited the toxic effects to the level observed for the control. Post-treated BCs had a toxic effect on D. magna, with EC50 values ranging from 433 to 783 mg L-1. The ecotoxicity of composites depends on modification methods, BC dose and pyrolysis temperature. The application of limiting conditions for HM leaching (i.e., pre-modification, calcination) increased the safety of using Zn-biochar composites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available