4.7 Article

Ball milling enhanced Cr(VI) removal of zero-valent iron biochar composites: Functional groups response and dominant reduction species

Journal

CHEMOSPHERE
Volume 311, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.137174

Keywords

Zero valent iron; Biochar; Ball milling; Hexavalent chromium; Density functional theory; Two-dimensional correlation spectroscopy

Ask authors/readers for more resources

Ball milling technique was introduced to modify Zero-valent iron biochar composites (ZVI/BC) for the removal of Cr(VI). Results showed that the maximum Langmuir adsorption capacity for Cr(VI) increased 2.08 times after ball milling. The initial adsorption rate also significantly increased. The improved dispersion of ZVI, enhanced contact between ZVI and biochar, and increased oxygen-containing functional groups in biochar contributed to the enhanced removal of Cr(VI).
Zero-valent iron biochar composites (ZVI/BC) have been widely used to remove Cr(VI) from water. However, the application of ZVI/BC prepared by the carbothermal reduction was limited by the non-uniform dispersion of ZVI on the biochar surface. In this work, ball milling technique was introduced to modify ZVI/BC. Results showed that after ball milling, the maximum Langmuir adsorption capacity for Cr(VI) was 117.7 mg g(-1) (298 K) which was 2.08 times higher than ZVI/BC. The initial adsorption rate of the Elovich model increased from 4.57 x 10(2) mg g(-1) min(-1) to 3.74 x 10(9) mg g(-1) min(-1) after ball milling. Dispersibility of ZVI on biochar surface and contact between ZVI and biochar were improved by the ball milling, thus accelerating the electron transfer. Besides, ball milling increased the content of oxygen-containing functional groups in biochar, contributing to the chemisorption of Cr(VI). The response sequence of oxygen-containing functional groups was analyzed by two-dimensional correlation spectroscopy, indicating that Cr(VI) preferentially complexed with phenolic -OH. Shielding experiments showed that Fe (0) was the dominant reducing species with a contribution of 73.4%, followed by surface-bound Fe(II) (21.3%) and dissolved Fe2+ (5.24%). Density functional theory calculations demonstrated that ball milled ZVI/BC improved the adsorption affinity and electron transfer flux towards Cr(VI) by introducing phenolic -OH and Fe (0). Combining all the textural characterization, the Cr(VI) removal mechanism of the ball milled ZVI/BC could be proposed as adsorption, reduction, and precipitation. Eventually, stable Cr-Fe oxides (FeOCr2O3 and Cr1 center dot 3Fe0 center dot 7O3) were formed. This work not only provides a simple method to modify ZVI/BC to remove Cr(VI) in water efficiently and rapidly, but also improves the mechanistic insight into the Cr(VI) removal by iron-carbon composites via the response sequence of functional group analysis and the quantitative analysis of reducing species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available