4.7 Review

Hexagonal-borocarbonitride (h-BCN) based heterostructure photocatalyst for energy and environmental applications: A review

Journal

CHEMOSPHERE
Volume 313, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.137610

Keywords

Hexagonal-borocarbonitride(h-BCN); Z-scheme photocatalyst; Pollutant degradation; H2 evolution; S-scheme

Ask authors/readers for more resources

Formulating heterojunctions with high efficiency using solar light is a promising solution for energy and environmental crises. Hexagonal-borocarbonitride (h-BCN) based Z-schemes have gained attention as potential candidates due to their excellent oxidation and reduction properties, light-harvesting ability, charge migration and separation capabilities, and redox ability. This review discusses the current state-of-the-art in Z-scheme photocatalytic applications, including synthesis techniques, reaction mechanisms, and the use of h-BCN-based heterojunction photocatalysts in various photo-redox applications. Challenges and future directions in environmental remediation are also proposed.
Formulation of heterojunction with remarkable high efficiency by utilizing solar light is promising to synchro-nously overcome energy and environmental crises. In this concern, hexagonal-borocarbonitride (h-BCN) based Z -schemes have proved potential candidates due to their spatially separated oxidation and reduction sites, robust light-harvesting ability, high charge pair migration and separation, and strong redox ability. H-BCN has emerged as a hotspot in the research field as a metal-free photocatalyst with a tunable bandgap range of 0-5.5 eV. The BCN photocatalyst displayed synergistic benefits of both graphene and boron nitride. Herein, the review dem-onstrates the current state-of-the-art in the Z-scheme photocatalytic application with a special emphasis on the predominant features of their photoactivity. Initially, fundamental aspects and various synthesis techniques are discussed, including thermal polymerization, template-assisted, and template-free methods. Afterward, the re-action mechanism of direct Z-scheme photocatalysts and indirect Z-scheme (all-solid-state) are highlighted. Moreover, the emerging Step-scheme (S-scheme) systems are briefly deliberated to understand the charge transfer pathway mechanism with an induced internal electric field. This review critically aims to comprehen-sively summarize the photo-redox applications of various h-BCN-based heterojunction photocatalysts including CO2 photoreduction, H2 evolution, and pollutants degradation. Finally, some challenges and future direction of h-BCN-based Z-scheme photocatalyst in environmental remediation are also proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available