4.7 Article

Polystyrene nanoparticles cause dynamic alteration in mitochondrial unfolded protein response from parents to the offspring in C. elegans

Journal

CHEMOSPHERE
Volume 308, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.136154

Keywords

Nanoplastic; mt UPR; Transgenerational response; C; elegans

Ask authors/readers for more resources

This study revealed the role of mt UPR in mediating transgenerational toxicity in Caenorhabditis elegans. After parental exposure to polystyrene nanoparticles (PS-NP), mt UPR suppression was observed, and the decreased expression of certain genes involved in controlling mt UPR was associated with the development of transgenerational toxic effects. The inhibition of mt UPR enhanced the toxicity of PS-NP over generations, while increasing mt UPR inhibited the toxicity.
The mitochondrial unfolded protein response (mt UPR) is important for organisms against the toxicity from toxicants and stresses. Polystyrene nanoparticle (PS-NP), one of the emerging pollutants, has aroused increasing concern for its toxicity in the offspring. Nevertheless, the molecular basis for this transgenerational toxicity remains largely unclear. In this study, the role of mt UPR in the induction of transgenerational toxicity was determined in Caenorhabditis elegans (C. elegans) after parental exposure to PS-NP. After exposure to PS-NP (1-100 mu g/L), the suppression in mt UPR showed the concentration-dependent in nematodes from P0 genera-tion (P0-G) to F2-G. Moreover, the decreased expression of genes required for controlling mt UPR (atfs-1, dve-1, and ubl-5 genes) were observed from P0-G to F2-G after exposure to PS-NP (1 mu g/L). The adverse effects on locomotion and reproductive capacity were more severe over generations in nematodes with RNAi of these three genes, indicating that these genes were involved in controlling transgenerational toxicity. After parental PS-NP exposure (1 mu g/L), the mt UPR was significantly inhibited by RNAi of atfs-1, dve-1, and ubl-5, indicating the association between the transgenerational PS-NP toxicity and mt UPR suppression. Additionally, during the transgenerational process, RNAi of atfs-1, dve-1, and ubl-5 enhanced the PS-NP toxicity by suppressing mt UPR, while RNAi of daf-2 encoding an insulin receptor inhibited the PS-NP toxicity by increasing mt UPR. Therefore, our data highlighted the role of inhibition in mt UPR in mediating the transgenerational nanoplastic toxicity in nematodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available