4.5 Article

Molecular Mechanism of the Role of Apigenin in the Treatment of Hyperlipidemia: A Network Pharmacology Approach

Journal

CHEMISTRY & BIODIVERSITY
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbdv.202200308

Keywords

network pharmacology; hyperlipidemia; apigenin; RT-qPCR

Ask authors/readers for more resources

This study investigated the therapeutic effect of apigenin on hyperlipidemia using network pharmacology and molecular docking strategy, and explored the potential targets of apigenin in the treatment of hyperlipidemia. Genetic Ontology Biological Process (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis were performed on the common targets. Molecular docking was used to predict the binding mode of apigenin to the target. Sprague Dawley rats were used to establish a hyperlipidemia model, and the expression levels of INS and VEGFA mRNA were detected.
The therapeutic effect of apigenin (APG) on hyperlipidemia was investigated using network pharmacology combined with molecular docking strategy, and the potential targets of APG in the treatment of hyperlipidemia were explored. Genetic Ontology Biological Process (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis of common targets were performed. Then, molecular docking was used to predict the binding mode of APG to the target. Finally, Sprague Dawley rats were used to establish a hyperlipidemia model. The expression levels of insulin (INS) and vascular endothelial growth factor A (VEGFA) mRNA in each group were detected by quantitative reverse transcription-polymerase chain reaction. Network pharmacological studies revealed that the role of APG in the treatment of hyperlipidemia was through the regulation of INS, VEGFA, tumor necrosis factor, epidermal growth factor receptor, matrix metalloprotein 9, and other targets, as well as through the regulation of the hypoxia-inducible factor 1 (HIF-1) signaling pathway, fluid shear stress, and atherosclerosis signaling pathways, vascular permeability; APG also participated in the regulation of glucose metabolism and lipid metabolism, and acted on vascular endothelial cells, and regulated vascular tone. Molecular docking showed that APG binds to the target with good efficiency. Experiments showed that after APG treatment, the expression levels of INS and VEGFA mRNA in the model group were significantly decreased (p<0.01). In conclusion, APG has multiple targets and affects pathways involved in the treatment of hyperlipidemia by regulating the HIF-1 signaling pathway, fluid shear stress, and the atherosclerosis pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available