4.8 Review

Recent Advances in Tetra- (Ti, Sn, Zr, Hf) and Pentavalent (Nb, V, Ta) Metal-Substituted Molecular Sieve Catalysis

Journal

CHEMICAL REVIEWS
Volume 123, Issue 3, Pages 877-917

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.2c00509

Keywords

-

Ask authors/readers for more resources

Metal substitution in molecular sieve systems is a driving force for developing novel catalytic processes in green chemistry and achieving sustainability in the chemical industry and our everyday life. Metal-substituted molecular sieves provide advantages such as high surface areas, molecular sieving effects, confinement effects, and variability and stability in active site and morphology.
Metal substitution of molecular sieve systems is a major driving force in developing novel catalytic processes to meet current demands of green chemistry concepts and to achieve sustainability in the chemical industry and in other aspects of our everyday life. The advantages of metal-substituted molecular sieves include high surface areas, molecular sieving effects, confinement effects, and active site and morphology variability and stability. The present review aims to comprehensively and critically assess recent advances in the area of tetra-(Ti, Sn, Zr, Hf) and pentavalent (V, Nb, Ta) metal-substituted molecular sieves, which are mainly characterized for their Lewis acidic active sites. Metal oxide molecular sieve materials with properties similar to those of zeolites and siliceous molecular sieve systems are also discussed, in addition to relevant studies on metal-organic frameworks (MOFs) and some composite MOF systems. In particular, this review focuses on (i) synthesis aspects determining active site accessibility and local environment; (ii) advances in active site characterization and, importantly, quantification; (iii) selective redox and isomerization reaction applications; and (iv) photoelectrocatalytic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available