4.8 Review

Oxide Cathodes: Functions, Instabilities, Self Healing, and Degradation Mitigations

Journal

CHEMICAL REVIEWS
Volume 123, Issue 2, Pages 811-833

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.2c00251

Keywords

-

Ask authors/readers for more resources

Recent progress has been made in high-energy-density oxide cathodes for lithium-ion batteries, but cycling under extreme conditions can lead to various forms of degradation that shorten battery life and cause safety issues. Understanding the underlying mechanisms of these degradations is critical for developing mitigation strategies. This systematic overview provides insights into the functions, instabilities, and materials behaviors of oxide cathodes, including unusual anion and cation mobilities and extensive lattice reconstructions. These insights are important for understanding self-healing phenomena and for designing and mitigating degradation in cathodes for high-performance energy storage.
Recent progress in high-energy-density oxide cathodes for lithium-ion batteries has pushed the limits of lithium usage and accessible redox couples. It often invokes hybrid anion-and cation-redox (HACR), with exotic valence states such as oxidized oxygen ions under high voltages. Electrochemical cycling under such extreme conditions over an extended period can trigger various forms of chemical, electrochemical, mechanical, and microstructural degradations, which shorten the battery life and cause safety issues. Mitigation strategies require an in-depth understanding of the underlying mechanisms. Here we offer a systematic overview of the functions, instabilities, and peculiar materials behaviors of the oxide cathodes. We note unusual anion and cation mobilities caused by high-voltage charging and exotic valences. It explains the extensive lattice reconstructions at room temperature in both good (plasticity and self-healing) and bad (phase change, corrosion, and damage) senses, with intriguing electrochemomechanical coupling. The insights are critical to the understanding of the unusual self-healing phenomena in ceramics (e.g., grain boundary sliding and lattice microcrack healing) and to novel cathode designs and degradation mitigations (e.g., suppressing stress-corrosion cracking and constructing reactively wetted cathode coating). Such mixed ionic-electronic conducting, electrochemically active oxides can be thought of as almost metalized if at voltages far from the open-circuit voltage, thus differing significantly from the highly insulating ionic materials in electronic transport and mechanical behaviors. These characteristics should be better understood and exploited for high-performance energy storage, electrocatalysis, and other emerging applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available