4.7 Article

High-adhesion PDMS/Ag conductive composites for flexible hybrid integration

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 451, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.138730

Keywords

Double network; Electrically conductive adhesives; Flexible electronics; Lap shear strength; Polydimethylsiloxane (PDMS)

Ask authors/readers for more resources

This study proposes a netting and anchoring strategy for high-performance stretchable electronics. By adding a small amount of polyborosiloxane (PBS) prepolymer, the formed PBS networks can both physically entangle with the PDMS networks and anchor them to adherent surfaces with reversible bonds. The obtained composites exhibit high adhesion strength and conductivity due to good wettability, uniform interfacial bonding, and stress transfer for energy dissipation.
The integration of silicon chips and other rigid components on soft polymeric substrate represents a viable option towards mass production of high-performance stretchable electronics, where bonding materials with high stretchability, high conductivity, and high adhesion strength become the key in the process. Poly-dimethylsiloxane/silver composites (PDMS/Ag) are promising candidates, but the adhesion of PDMS-based composites is usually too weak to be useful. Herein, we report a netting and anchoring strategy, in which a small amount of polyborosiloxane (PBS) prepolymer is added and the formed PBS networks not only net the PDMS networks with dense physical entanglements but also anchor PDMS networks to adherent surfaces with reversible bonds. The obtained composites have an adhesion strength of 2.87 MPa (8.2 times and 3.2 times higher than that of the untreated and conventional silane-treated composites) and maintain a high conductivity of 1.3 x 10(-4) omega.cm. The enhanced bonding originates from three aspects: good wettability, uniform interfacial bonding, and stress transfer from the interface to the bulk to elicit bulk energy dissipation. As an example, a stretchable temperature sensor system integrated with this strategy can resist up to 70% stretching, bending, and twisting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available