4.7 Article

Organothiols for dual-interface modification of high performance lithium-sulfur batteries

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 448, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.137552

Keywords

Lithium-sulfur batteries; Trithiocyanuric acid; Interface modification; Shuttle effect; Electrolyte

Funding

  1. National Natural Science Founda-tion of China [52174287, 51904343]
  2. National Natural Science Foundation of China [52034011]
  3. Hunan Science and technology innovation leading project [2020GK2074]
  4. Funds for Creative Research Groups of Hunan province [2020JJ1007]

Ask authors/readers for more resources

A new electrolyte additive called TMT is found to greatly improve the electrochemical performance of Li-S batteries by reducing polysulfide concentration and inhibiting shuttle effect. Additionally, a stable solid electrolyte interphase (SEI) formed on the lithium metal anode allows for long cycle life and high specific capacity.
Lithium-sulfur (Li-S) batteries are considered as one of the most likely to be the next generation energy storage systems. However, the shuttle effect and interface instability of lithium metal anode plague their electrochemical performance. Researchers have made great efforts to solve these issues by introducing suitable electrolyte additives. Herein, we find a new electrolyte additive, Trithiocyanuric acid (TMT), greatly improving the Li-S battery electrochemical performance. The TMT decreases the polysulfides concentration in the electrolyte and inhibits the shuttle effect by changing the reaction pathway of active materials. Moreover, a stable solid electrolyte interphase (SEI) formed on the lithium metal anode with TMT enables the Li/Cu cell with an over potential of about 0.02 V at a current density of 0.5 mA cm(-2) for over 500 h. Li-S batteries with TMT show an extremely high reversible capacity of 674.5 mAh g(-1) after 300 cycles at 0.5C and a low capacity fading rate of 0.12% per cycle for 300 cycles. Most importantly, Li-S pouch cells (300 Wh kg(-1)) with TMT exhibit stable long cycle with a high specific capacity of 602 mAh g(-1) after 170 cycles at 0.1C, which greatly promotes the practical applications of Li-S batteries. This work demonstrates that multi aspect modifying together can better realize high-performance Li-S batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available