4.7 Article

Toward highly reversible aqueous zinc-ion batteries: nanoscale-regulated zinc nucleation via graphene quantum dots functionalized with multiple functional groups

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 452, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.139090

Keywords

Aqueous Zn-ion batteries; Functionalized graphene quantum dots; Electrochemical induction; Nucleation; Dendrite-free

Ask authors/readers for more resources

In this study, a novel type of nanosized and functionalized graphene quantum dots (F-GQDs) are decorated on a zinc anode to improve the electrochemical performance. The F-GQDs can regulate the plating/stripping process of zinc and enhance the rate capability and long-term cycling performance when coupled with MnO2 cathodes.
Rechargeable aqueous Zn-ion batteries have a promising application potential and represent competitive candidates in the field of large-scale energy storage. However, Zn metal is prone to uncontrolled dendrite formation, hydrogen evolution, and corrosion, all of which limit the reversibility of the corresponding batteries. Herein, a novel kind of nanosized and functionalized graphene quantum dots (F-GQDs) is decorated on a Zn anode via in situ electrochemical induction. These quantum dots (similar to 5 nm) can regulate Zn plating/stripping at the nanoscale. Furthermore, the high electronegativity of polar functional groups (-OH, -COOH, -NH2, and -SCN) on the GQDs results in strong Zn2+ affinity and the F-GQDs endow the Zn anode with high hydrophilicity, low nucleation energy barrier, and an evenly distributed electrical field. As a result, the F-GQDs-decorated Zn anode achieves superior Zn plating/stripping for greater than 450 h at 10 mA cm(-2) and 5 mAh cm(-2), with a low voltage hysteresis of 81 mV. Moreover, when coupled with MnO2 cathodes, the F-GQDs-decorated Zn enables the fabrication of Zn parallel to MnO2 full batteries with significantly enhanced rate capability and long-term cycling performance (capacity retention of 78.6 % at 1 A/g after 500 cycles).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available