4.7 Article

Electronegative Cl- modified BiVO4 photoanode synergized with nickel hydroxide cocatalyst for high-performance photoelectrochemical water splitting

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 454, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.140081

Keywords

BiVO4; Chlorination; Ni(OH)(2); Surface modification; Photoelectrochemical; Hydrogen

Ask authors/readers for more resources

The modification of BiVO4 surface by Cl greatly enhances the photoelectric water oxidation activity, and when combined with Ni(OH)2 as a cocatalyst, a high-performance photoanode Ni(OH)2/Cl-BiVO4 is successfully constructed with significantly improved photocurrent density compared to pure BiVO4.
BiVO4 is a promising photoanode material for converting solar energy into hydrogen fuel, but its practical applicability is primarily constrained by severe surface charge recombination and slow water oxidation processes. Here, the modification of BiVO4 surface by Cl with appropriate electronegativity greatly promoted the photoelectric water oxidation activity. The Cl-BiVO4 electrode exhibited a photocurrent of 2.55 mA cm(-2), at 1.23 V vs RHE. The research shows that the surface anion polarization of BiVO4 is helpful for trapping photogenerated holes and prolonging the electron lifetimes. Then, the cocatalyst Ni(OH)(2) is anchored on Cl-BiVO4 by a simple impregnation method, and a high-performance photoanode Ni(OH)(2)/Cl-BiVO4 is successfully constructed. The photocurrent density of the composite photoanode is 4.33 mA cm(-2) (1.23 V vs RHE), which is approximately 3.0 times that of pure BiVO4 (1.44 mA cm(-2)). Moreover, the initial potential is negatively shifted, and the ABPE, IPCE and charge separation efficiency are also significantly improved. This research presents a simple and effective strategy for producing low-cost, high-performance solar water decomposition catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available