4.7 Article

Competition of alliances in a cyclically dominant eight-species population

Journal

CHAOS SOLITONS & FRACTALS
Volume 166, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chaos.2022.113004

Keywords

Cyclic dominance; Alliances; Competition

Ask authors/readers for more resources

In a diverse population, competitors can form alliances to ensure stable coexistence against invasion. We studied a Lotka-Volterra model of eight-species and found that equally strong alliances were more likely to prevail. However, there were regions where symmetry was broken and a solution dominated by seven species emerged. Finite-size effects could also prevent observing the valid solution in a small system.
In a diverse population, where many species are present, competitors can fight for surviving at individual and collective levels. In particular, species, which would beat each other individually, may form a specific alliance that ensures them stable coexistence against the invasion of an external species. Our principal goal is to identify those general features of a formation which determine its vitality. Therefore, we here study a traditional Lotka-Volterra model of eight-species where two four-species cycles can fight for space. Beside these formations, there are other solutions which may emerge when invasion rates are varied. The complete range of parameters is explored and we find that in most of the cases those alliances prevail which are formed by equally strong members. Interestingly, there are regions where the symmetry is broken and the system is dominated by a solution formed by seven species. Our work also highlights that serious finite-size effects may emerge which prevent observing the valid solution in a small system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available