4.7 Article

HSP70-binding motifs function as protein quality control degrons

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 80, Issue 1, Pages -

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-022-04679-3

Keywords

Protein unfolding; Protein degradation; Proteasome; Protein stability; Protein quality control; Chaperone

Ask authors/readers for more resources

Protein quality control (PQC) degrons are short protein segments that target misfolded proteins for proteasomal degradation, and chaperone-binding regions may function as PQC degrons. A canonical Hsp70-binding motif, the APPY peptide, functions as a dose-dependent PQC degron in yeast and human cells. The number of exposed Hsp70-binding sites in the yeast proteome correlates with reduced protein abundance and half-life.
Protein quality control (PQC) degrons are short protein segments that target misfolded proteins for proteasomal degradation, and thus protect cells against the accumulation of potentially toxic non-native proteins. Studies have shown that PQC degrons are hydrophobic and rarely contain negatively charged residues, features which are shared with chaperone-binding regions. Here we explore the notion that chaperone-binding regions may function as PQC degrons. When directly tested, we found that a canonical Hsp70-binding motif (the APPY peptide) functioned as a dose-dependent PQC degron both in yeast and in human cells. In yeast, Hsp70, Hsp110, Fes1, and the E3 Ubr1 target the APPY degron. Screening revealed that the sequence space within the chaperone-binding region of APPY that is compatible with degron function is vast. We find that the number of exposed Hsp70-binding sites in the yeast proteome correlates with a reduced protein abundance and half-life. Our results suggest that when protein folding fails, chaperone-binding sites may operate as PQC degrons, and that the sequence properties leading to PQC-linked degradation therefore overlap with those of chaperone binding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available