4.7 Article

Unveiling the transcriptomic landscape and the potential antagonist feedback mechanisms of TGF-β superfamily signaling module in bone and osteoporosis

Journal

CELL COMMUNICATION AND SIGNALING
Volume 20, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12964-022-01002-2

Keywords

Antagonist; BMP8; Mesenchymal stem cell; Osteoporosis; TGF-beta superfamily

Categories

Funding

  1. Ministry of Science and Technology in Taiwan [MOST 107-2314-B-010-016-MY3, MOST 110-2320-B-A49A-530-]

Ask authors/readers for more resources

This study revealed, for the first time, the transcription landscape of all the genes that make up the TGF-beta superfamily signaling module in bone, providing novel hints for treating osteoporosis.
Background: TGF-beta superfamily signaling is indispensable for bone homeostasis. However, the global expression profiles of all the genes that make up this signaling module in bone and bone-related diseases have not yet been well characterized. Methods: Transcriptomic datasets from human bone marrows, bone marrow-derived mesenchymal stem cells (MSCs) and MSCs of primary osteoporotic patients were used for expression profile analyses. Protein treatments, gene quantification, reporter assay and signaling dissection in MSC lines were used to clarify the interactive regulations and feedback mechanisms between TGF-beta superfamily ligands and antagonists. Ingenuity Pathway Analysis was used for network construction. Results: We identified TGFB1 in the ligand group that carries out SMAD2/3 signaling and BMP8A, BMP8B and BMP2 in the ligand group that conducts SMAD1/5/8 signaling have relatively high expression levels in normal bone marrows and MSCs. Among 16 antagonist genes, the dominantly expressed TGF-beta superfamily ligands induced only NOG, GREM1 and GREM2 via different SMAD pathways in MSCs. These induced antagonist proteins further showed distinct antagonisms to the treated ligands and thus would make up complicated negative feedback networks in bone. We further identified TGF-beta superfamily signaling is enriched in MSCs of primary osteoporosis. Enhanced expression of the genes mediating TGF-beta-mediated SMAD3 signaling and the genes encoding TGF-beta superfamily antagonists served as significant features to osteoporosis. Conclusion: Our data for the first time unveiled the transcription landscape of all the genes that make up TGF-beta superfamily signaling module in bone. The feedback mechanisms and regulatory network prediction of antagonists provided novel hints to treat osteoporosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available