4.8 Article

Metal-organic framework-derived ZrO2 on N/S-doped porous carbons for mechanistic and kinetic inspection of catalytic H2O2 homolysis

Journal

CARBON
Volume 203, Issue -, Pages 630-649

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2022.12.023

Keywords

Metal -organic framework; Pyrolysis; Non -reducible metal; Dopant; Br ?nsted; Lewis acidity; Homolytic H 2 O 2 scission

Ask authors/readers for more resources

In this study, UiO-66 and its analogues functionalized with -NH2/-SO3H were synthesized to generate ZrO2 poly-crystallites on N/S-doped carbon catalysts via pyrolysis. The catalysts contained different concentrations of Lewis basic N/S dopants, resulting in varying strengths and areas of Bro·nsted acidic -OH and Lewis acidic Zr4+ species. The results showed that adjusting the EBA/SLA ratio can promote the production of ·OH via catalytic H2O2 homolysis.
Homolytic and heterolytic H2O2 scissions are central to produce center dot OH for aqueous contaminant fragmentation. However, the kinetic, mechanistic, and energetic aspects of homolytic H2O2 cleavage remain under-explored, providing impetus for research with the use of difficult-to-degrade phenol as a model pollutant. Herein, UiO-66 and its analogues functionalized with -NH2/-SO3H (UiO-66-NH2/UiO-66-SO3H) were synthesized to generate ZrO2 poly-crystallites on N/S-doped carbon catalysts via pyrolysis (CUiO-66/CUiO-66-NH2/CUiO-66-SO3H). The catalyst surfaces contained distinct concentrations of Lewis basic N/S dopants, which donated electrons to adjacent Bro center dot nsted acidic -OH (BA) and Lewis acidic Zr4+ (LA) species dissimilarly, resulting in the catalysts with diverse BA/LA strengths (EBA/ELA) and areas (SBA/SLA). CUiO-66 exhibited the highest ELA and lowest EBA, which are favorable for endothermic H2O2 distortion, whereas CUiO-66-SO3H exhibited the lowest ELA and highest EBA, with only EBA being favorable for endothermic center dot OH desorption, while leaving the other elementary steps exothermic. Kinetic analysis and DFT calculations revealed that CUiO-66-SO3H possessed the lowest energy barrier (EBARRIER), demonstrating center dot OH desorption was the rate-determining step alongside with the significance of high EBA for reducing EBARRIER. Meanwhile, the highest pre-factor was observed for CUiO-66 with the largest SLA, corroborating the significance of large SLA for escalating the collision frequency between Zr4+ and H2O2/center dot OH. These results boost to adjust EBA/SLA for promoting center dot OH productivity via catalytic H2O2 homolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available