4.7 Article

Fully bio-based hydroxy ester vitrimer synthesized by crosslinking epoxidized soybean oil with doubly esterified starch

Journal

CARBOHYDRATE POLYMERS
Volume 302, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2022.120442

Keywords

Epoxidized soybean oil; Modified starch; Hydroxyester dynamic covalent bond; Biomass; Vitrimer

Ask authors/readers for more resources

Catalyst-free fully bio-based hydroxyester (BHE) vitrimers were synthesized by crosslinking and plasticizing epoxidized soybean oil with synthesized acetylated starch succinate monoesters to investigate the effects of different starch structures on the properties of the BHE vitrimers. The BHE vitrimers possessed a lower glass transition temperature, better solvent resistance, and reprocessing performance compared to traditional starch-based materials. Due to dynamically covalent bonds, the migration and exudation of plasticizers were avoided. A maximum strain of 230% was achieved to prevent the retrogradation and brittleness of starch-based materials. Furthermore, the mechanical properties remained unchanged after three reprocessing cycles. Consequently, the obtained BHE vitrimers are eco-friendly and sustainable.
Catalyst-free fully bio-based hydroxyester (BHE) vitrimers were synthesized by crosslinking and plasticizing epoxidized soybean oil with synthesized acetylated starch succinate monoesters to investigate the effects of different starch structures on the properties of the BHE vitrimers. The BHE vitrimers possessed a lower glass transition temperature as well as better solvent resistance and reprocessing performance compared to traditional starch-based materials. Owing to dynamically covalent bonds, the migration and exudation of plasticizers were avoided. A maximum strain of 230 % was achieved to prevent the retrogradation and brittleness of starch-based materials. Furthermore, the mechanical properties remained unchanged after three reprocessing cycles. Consequently, the obtained BHE vitrimers are eco-friendly and sustainable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available