4.2 Article

The antagonistic potential of peanut endophytic bacteria against Sclerotium rolfsii causing stem rot

Journal

BRAZILIAN JOURNAL OF MICROBIOLOGY
Volume 54, Issue 1, Pages 361-370

Publisher

SPRINGER
DOI: 10.1007/s42770-022-00896-x

Keywords

Bacillus sp.; Burkholderia sp.; Sclerotium rolfsii; Peanut endophytic bacteria; Defense enzyme

Categories

Ask authors/readers for more resources

This study aims to obtain peanut endophytic bacteria with high antagonistic/protective effects against peanut stem rot caused by Sclerotium rolfsii. 45 bacterial strains were isolated from healthy peanut plants, and 6 of them exhibited antagonistic activity against S. rolfsii. Two strains, Bacillus sp. F-1 and Burkholderia sp. R-11, showed strong antagonistic effects and can be potential biocontrol agents for peanut stem rot.
Peanut stem rot caused by Sclerotium rolfsii Sacc. is the most common disease of peanut worldwide and has become increasingly serious in recent years. This study is aimed at obtaining peanut endophytic bacteria with high antagonistic/protective effects against peanut stem rot. In total, 45 bacterial strains were isolated from healthy peanut plants from a severely impacted area. Of these, 6 exhibited antagonistic activity against S. rolfsii, including F-1 and R-11 with the most robust activity with an inhibition zone width of 20.25 and 15.49 mm, respectively. These two were identified as Bacillus sp. and Burkholderia sp., respectively, based on morphological, physiological, and biochemical characteristics and 16S rDNA sequencing. To the best of our knowledge, this is the first study to report the Burkholderia sp. antagonistic effect on S. rolfsii as a biological control agent for peanut stem rot. Their culture filtrates potently inhibited the hyphal growth, sclerotial formation, and germination of S. rolfsii. Also, the strain-produced volatile compounds inhibited the fungal growth. Pot experiments showed that F-1 and R-11 significantly reduced the peanut stem rot disease with the efficacy of 77.13 and 64.78%, respectively, which was significantly higher compared with carbendazim medicament (35.22%; P < 0.05). Meanwhile, F-1 and R-11 improved the activity of plant defense enzymes such as phenylalaninase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) enhancing the systemic resistance of the peanut plants. This study demonstrated that Bacillus sp. F-1 and Burkholderia sp. R-11, with a strong antagonistic effect on S. rolfsii, can be potential biocontrol agents for peanut stem rot.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available