4.4 Article

Human voices escape the auditory attentional blink: Evidence from detections and pupil responses

Journal

BRAIN AND COGNITION
Volume 165, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bandc.2022.105928

Keywords

Pupillometry; Attentional blink; Human voice; Auditory attention; Temporal selective attention; Locus coeruleus-noradrenaline

Ask authors/readers for more resources

When two targets are presented in close temporal proximity, the attentional selection of a second target tends to be impaired, known as attentional blink. The study suggests that human voices are less likely to be affected by attentional blink and the changes in pupil dilation reflect the T2 attentional deficit.
Attentional selection of a second target in a rapid stream of stimuli embedding two targets tends to be briefly impaired when two targets are presented in close temporal proximity, an effect known as an attentional blink (AB). Two target sounds (T1 and T2) were embedded in a rapid serial auditory presentation of environmental sounds with a short (Lag 3) or long lag (Lag 9). Participants were to first identify T1 (bell or sine tone) and then to detect T2 (present or absent). Individual stimuli had durations of either 30 or 90 ms, and were presented in streams of 20 sounds. The T2 varied in category: human voice, cello, or dog sound. Previous research has introduced pupillometry as a useful marker of the intensity of cognitive processing and attentional allocation in the visual AB paradigm. Results suggest that the interplay of stimulus factors is critical for target detection accuracy and provides support for the hypothesis that the human voice is the least likely to show an auditory AB (in the 90 ms condition). For the other stimuli, accuracy for T2 was significantly worse at Lag 3 than at Lag 9 in the 90 ms condition, suggesting the presence of an auditory AB. When AB occurred (at Lag 3), we observed smaller pupil dilations, time-locked to the onset of T2, compared to Lag 9, reflecting lower attentional processing when 'blinking' during target detection. Taken together, these findings support the conclusion that human voices escape the AB and that the pupillary changes are consistent with the so-called T2 attentional deficit. In addition, we found some indication that salient stimuli like human voices could require a less intense allocation of attention, or noradrenergic potentiation, compared to other auditory stimuli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available