4.2 Article

Limited seed dispersal shapes fine-scale spatial genetic structure in a Neotropical dioecious large-seeded palm

Journal

BIOTROPICA
Volume 55, Issue 1, Pages 160-172

Publisher

WILEY
DOI: 10.1111/btp.13172

Keywords

Arecaceae; genetic diversity; microsatellite markers; Phytelephas aequatorialis; rodent dispersal; W Ecuador

Categories

Ask authors/readers for more resources

This study investigated the genetic patterns of Phytelephas aequatorialis using microsatellite markers. The results showed that seed dispersal mediated by rodents had shorter distances compared to pollen dispersal. Seed dispersal had a minor contribution to gene flow, with spatially limited seed dispersal being the main factor shaping the genetic structure. Pollen dispersal distances were influenced by the density of male palms.
Seed and pollen dispersal contribute to gene flow and shape the genetic patterns of plants over fine spatial scales. We inferred fine-scale spatial genetic structure (FSGS) and estimated realized dispersal distances in Phytelephas aequatorialis, a Neotropical dioecious large-seeded palm. We aimed to explore how seed and pollen dispersal shape this genetic pattern in a focal population. For this purpose, we genotyped 138 seedlings and 99 adults with 20 newly developed microsatellite markers. We tested if rodent-mediated seed dispersal has a stronger influence than insect-mediated pollen dispersal in shaping FSGS. We also tested if pollen dispersal was influenced by the density of male palms around mother palms in order to further explore this ecological process in large-seeded plants. Rodent-mediated dispersal of these large seeds occurred mostly over short distances (mean 34.76 +/- 34.06 m) while pollen dispersal distances were two times higher (mean 67.91 +/- 38.29 m). The spatial extent of FSGS up to 35 m and the fact that seed dispersal did not increase the distance at which male alleles disperse suggest that spatially limited seed dispersal is the main factor shaping FSGS and contributes only marginally to gene flow within the population. Pollen dispersal distances depended on the density of male palms, decreasing when individuals show a clumped distribution and increasing when they are scattered. Our results show that limited seed dispersal mediated by rodents shapes FSGS in P. aequatorialis, while more extensive pollen dispersal accounts for a larger contribution to gene flow and may maintain high genetic diversity.Abstract in Spanish is available with online material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available