4.8 Article

Monitoring leaching of Cd2+from cadmium-based quantum dots by an Cd aptamer fluorescence sensor

Journal

BIOSENSORS & BIOELECTRONICS
Volume 220, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114880

Keywords

Cadmium-based quantum dots; Aptamer sensor; Real-time monitoring

Ask authors/readers for more resources

This study presents a fluorescence aptamer sensor that can monitor the rapid leaching kinetics of quantum dots and the concentration of ions in living cells in real time. The sensor shows high specificity and can be used to study the biosafety and cytotoxicity mechanisms of various cadmium-based quantum dots.
Quantum Dots (QDs) have been demonstrated with outstanding optical properties and thus been widely used in many biological and biomedical studies. However, previous studies have shown that QDs can cause cell toxicity, mainly attributable to the leached Cd2+. Therefore, identifying the leaching kinetics is very important to understand QD biosafety and cytotoxicity. Toward this goal, instrumental analyses such as inductively coupled plasma mass spectrometry (ICP-MS) have been used, which are time-consuming, costly and do not provide realtime or spatial information. To overcome these limitations, we report herein a fast and cost-effective fluorescence sensor based a Cd2+-specific aptamer for real-time monitoring the rapid leaching kinetics of QDs in vitro and in living cells. The sensor shows high specificity towards Cd2+ and is able to measure the Cd2+ leached either from water-dispersed CdTe QDs or two-layered CdSe/CdS QDs. The sensor is then used to study the stability of these two types of QDs under conditions to mimic cellular pH and temperature and the results from the sensor are similar to those obtained from ICP-MS. Finally, the sensor is able to monitor the leaching of Cd2+ from QDs in HeLa cells. The fluorescence aptamer sensor described in this study may find many applications as a tool for understanding biosafety of numerous other Cd-based QDs, including leaching kinetics and toxicity mechanisms in living systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available