4.8 Article

Soft hydrogel-shell confinement systems as bacteria-based bioactuators and biosensors

Journal

BIOSENSORS & BIOELECTRONICS
Volume 219, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114809

Keywords

Whole cell bioactuators; Alginate hydrogel structures; Core-shell architecture; Genetically engineered bacteria

Ask authors/readers for more resources

In this study, a natural soft hydrogel bioactuator based on alginate core-shell structures was developed to enable 3D microbial colonization at high cell density. Compared to conventional techniques, this system showed a significant increase in cellular biomass, enzymatic activity, and bioluminescence signal, while providing sustained support for bacterial growth within confined space.
Genetically engineered (GE) bacteria were utilized for developing functional systems upon confinement within a restricted space. Use of natural soft hydrogel such as alginate, gelatin, and agarose, have been investigated as promising approaches to design functional architectures. Nevertheless, a challenge is to develop functional microenvironments that support biofilm-like confinement in a relevant three-dimensional (3D) format for long-term studies. We demonstrate a natural soft hydrogel bioactuator based on alginate core-shell structures (0.25-2 mm core and 50-300 mu m shell thickness) that enables 3D microbial colonization upon confinement with high cell density. Specially, our study evaluates the efficiency of bacteria-functional system by recapitulating various GE bacteria which can produce common reporter proteins, to demonstrate their actuator functions as well as dy-namic pair-wise interactions. The structural design of the hydrogel can endure continued growth of various bacteria colonies within the confined space for over 10 days. The total amount of cellular biomass upon hydrogel-shell confinement was increased 5-fold compared to conventional techniques without hydrogel-shell. Further-more, the enzymatic activity increased 3.8-fold and bioluminescence signal by 8-fold compared to the responses from conventional hydrogel systems. The conceptualized platform and our workflow represent a reliable strategy with core-shell structures to develop artificial hydrogel habitats as bacteria-based functional systems for bioactuation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available