4.5 Article

The spatial resolution limit of phagocytosis

Journal

BIOPHYSICAL JOURNAL
Volume 122, Issue 5, Pages 868-879

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2023.01.030

Keywords

-

Categories

Ask authors/readers for more resources

Antibody-opsonized bacteria interact with Fc receptors in macrophages and trigger signaling cascades that induce phagocytosis. The spreading distance of this initial stimulus created by the bacterium-cell contact in the cell is closely related to the spatial resolution limit of phagocytosis. This study used holographic optical tweezers to attach particles to macrophages and developed a model to explain the phagocytic uptake behavior.
Antibody-opsonized bacteria interact with Fc receptors in macrophages and trigger signaling cascades, which induce phagocytosis. The signaling pathways ultimately lead to actin polymerization that induces the protrusion of the membrane around the bacterium until it is completely engulfed. Although many proteins involved in the phagocytic cup formation have already been identified, it is still unclear how far the initial stimulus created by the bacterium-cell contact propagates in the cell. We hypothesize that this spreading distance is closely related to the spatial resolution limit of phagocytosis, the smallest distance in which two stimuli can be differentiated. Here, we probe this resolution limit by using holographic optical tweezers to attach pairs of immunoglobulin G-coated polystyrene microparticles (as models for opsonized bacteria) to murine macrophages in distances ranging from zero to several micrometers. By using 2-mm-sized particles, we found that the particles can be internalized jointly into one phagosome if they are attached to the cell very close together, but that they are taken up separately if they are attached far from each other. To explain this, we developed a model of the signaling process, which predicts the probabilities for separate uptake for different particle sizes and distances using cellular parameters including the average receptor distance. We tested the model by measuring the separate uptake probabilities for particles with a diameter of 1 to 3 mm and for cells with reduced numbers of Fcg receptors and found very good agreement. Our model shows that the phagocytic uptake behavior can be explained by assuming an effective phagocytic signaling range of about 500 nm. Interestingly, this value corresponds to the lower size limit of phagocytosis. Our work provides quantitative access to spatial parameters of cellular signaling during phagocytosis and thereby contributes to a more quantitative understanding of cellular information processing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available