4.5 Article

Role of K364 next to the active site cysteine in voltage-dependent phosphatase activity of Ci-VSP

Journal

BIOPHYSICAL JOURNAL
Volume 122, Issue 11, Pages 2267-2284

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2023.01.022

Keywords

-

Categories

Ask authors/readers for more resources

Voltage-sensing phosphatase (VSP) consists of the voltage sensor domain (VSD) similar to that of voltage-gated ion channels and the cytoplasmic phosphatase region with remarkable similarity to PTEN. Depolarization of the membrane activates VSD, leading to dephosphorylation of PIPs. A bioinformatics search revealed amino acid diversity in VSP orthologs, particularly at a critical site in PTEN, and subsequent mutational analyses were performed to investigate the significance of this diversity.
Voltage-sensing phosphatase (VSP) consists of the voltage sensor domain (VSD) similar to that of voltage-gated ion channels and the cytoplasmic phosphatase region with remarkable similarity to the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Membrane depolarization activates VSD, leading to dephosphorylation of three species of phos- phoinositides (phosphatidylinositol phosphates (PIPs)), PI(3,4,5)P3, PI(4,5)P2, and PI(3,4)P2. VSP dephosphorylates 3- and 5-phosphate of PIPs, unlike PTEN, which shows rigid 3-phosphate specificity. In this study, a bioinformatics search showed that some mammals have VSP orthologs with amino acid diversity in the active center motif, Cx5R, which is highly conserved among protein tyrosine phosphatases and PTEN-related phosphatases; lysine next to the active site cysteine in the Cx5R motif was substituted for methionine in VSP orthologs of Tasmanian devil, koala, and prairie deer mouse, and leucine in opossum. Since lysine at the corresponding site in PTEN is known to be critical for enzyme activities, we attempted to address the signif- icance of amino acid diversity among VSP orthologs at this site. K364 was changed to different amino acids in sea squirt VSP (Ci-VSP), and voltage-dependent phosphatase activity in Xenopus oocyte was studied using fluorescent probes for PI(4,5)P2 and PI(3,4)P2. All mutants retained both 5-phosphatase and 3-phosphatase activity, indicating that lysine at this site is dispens- able for 3-phosphatase activity, unlike PTEN. Notably, K364M mutant showed increased activity both of 5-phosphatase and 3-phosphatase compared with the wild type (WT). It also showed slower kinetics of voltage sensor motion. Malachite green assay of K364M mutant did not show significant difference of phosphatase activity from WT, suggesting tighter interaction between substrate binding and voltage sensing. Mutation corresponding to K364M in the zebrafish VSP led to enhanced voltage-dependent dephosphorylation of PI(4,5)P2. Further studies will provide clues to understanding of substrate preference in PIPs phosphatases as well as to customization of a molecular tool.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available