4.7 Article

Disulfiram and Diphenhydramine Hydrochloride Upregulate miR-30a to Suppress IL-17-Associated Autoimmune Inflammation

Journal

JOURNAL OF NEUROSCIENCE
Volume 36, Issue 35, Pages 9253-9266

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4587-15.2016

Keywords

EAE; FDA-approved drugs; miRNAs; multiple sclerosis; Th17 cells

Categories

Funding

  1. National Natural Science Foundation of China [31130024, 81371326, 31371068, 31571066, 81461138035]

Ask authors/readers for more resources

T-helper 17 (Th17) cells play an important role in the pathogenesis of multiple sclerosis (MS), an autoimmune demyelinating disease that affects the CNS. In the present study, MicroRNA sequencing (miRNA-seq) was performed in mouse Th0 and Th17 cells to determine the critical miRNAs that are related to Th17 differentiation. We found that miR-30a was significantly downregulated during mouse Th17 differentiation. In addition, the level of miR-30a in CD4(+) T cells from peripheral blood of MS patients and experimental autoimmune encephalomyelitis (EAE) animal models was also decreased and inversely correlated with the expression of interleukin 17a, the canonical cytokine of Th17 cells. Moreover, overexpression of miR-30a inhibited Th17 differentiation and prevented the full development of EAE, whereas interference of miR-30a promoted Th17 differentiation. Mechanism studies showed that miR-30a reduced IRF4 expression by specifically binding with the 3'-untranslated region. Through screening of 640 different Food and Drug Administration (FDA)-approved drugs, we found that disulfiram and diphenhydramine hydrochloride were effective candidates for inhibiting Th17 differentiation and ameliorating EAE development through upregulating miR-30a. To our knowledge, the present work is not only the first miRNA-seq study focusing on Th17 differentiation, but also the first chemical screening for FDA-approved drugs that inhibit Th17 differentiation through regulating miRNA expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available