4.7 Article

Wiring of bilirubin oxidases with redox polymers on gas diffusion electrodes for increased stability of self-powered biofuel cells-based glucose sensing

Journal

BIOELECTROCHEMISTRY
Volume 149, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2022.108314

Keywords

Bilirubin oxidase; Glucose sensor; Gas diffusion electrode; Oxygen reduction; Redox polymer

Ask authors/readers for more resources

A new redox polymer/bilirubin oxidase-based gas diffusion electrode has been developed as a non-current and non-stability limiting biocathode in a glucose/O2 biofuel cell, serving as a self-powered glucose biosensor.
A new redox polymer/bilirubin oxidase (BOD)-based gas diffusion electrode was designed to be implemented as the non-current and non-stability limiting biocathode in a glucose/O2 biofuel cell that acts as a self-powered glucose biosensor. For the proof-of-concept, a bioanode comprising the Os-complex modified redox polymer P (VI-co-AA)-[Os(bpy)2Cl]Cl and FAD-dependent glucose dehydrogenase to oxidize the analyte was used. In order to develop an optimal O2-reducing biocathode for the biofuel cell Mv-BOD as well as Bp-BOD and Mo-BOD have been tested in gas diffusion electrodes in direct electron transfer as well as in mediated electron transfer immobilized in the Os-complex modified redox polymer P(VI-co-AA)-[Os(diCl-bpy)2]Cl2. The resulting biofuel cell exhibits a glucose-dependent current and power output in the concentration region between 1 and 10 mM. To create a more realistic test environment, the performance and long-term stability of the biofuel cell-based self-powered glucose biosensor has been investigated in a flow-through cell design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available