4.6 Article

Probabilistic mass-mapping with neural score estimation

Journal

ASTRONOMY & ASTROPHYSICS
Volume 672, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202243054

Keywords

cosmology: observations; methods: statistical; gravitational lensing: weak

Ask authors/readers for more resources

This study introduces a novel methodology that efficiently samples the high-dimensional Bayesian posterior of weak lensing mass-mapping problem, using a non-Gaussian prior based on simulations. The results demonstrate that the proposed method outperforms previous algorithms in terms of root-mean-square error and Pearson correlation, and successfully reconstructs the highest-quality convergence map of the HST/ACS COSMOS field.
Context. Weak lensing mass-mapping is a useful tool for accessing the full distribution of dark matter on the sky, but because of intrinsic galaxy ellipticies, finite fields, and missing data, the recovery of dark matter maps constitutes a challenging, ill-posed inverse problem Aims. We introduce a novel methodology that enables the efficient sampling of the high-dimensional Bayesian posterior of the weak lensing mass-mapping problem, relying on simulations to define a fully non-Gaussian prior. We aim to demonstrate the accuracy of the method to simulated fields, and then proceed to apply it to the mass reconstruction of the HST/ACS COSMOS field. Methods. The proposed methodology combines elements of Bayesian statistics, analytic theory, and a recent class of deep generative models based on neural score matching. This approach allows us to make full use of analytic cosmological theory to constrain the 2pt statistics of the solution, to understand any differences between this analytic prior and full simulations from cosmological simulations, and to obtain samples from the full Bayesian posterior of the problem for robust uncertainty quantification. Results. We demonstrate the method in the kappa TNG simulations and find that the posterior mean significantly outperfoms previous methods (Kaiser-Squires, Wiener filter, Sparsity priors) both for the root-mean-square error and in terms of the Pearson correlation. We further illustrate the interpretability of the recovered posterior by establishing a close correlation between posterior convergence values and the S/N of the clusters artificially introduced into a field. Finally, we apply the method to the reconstruction of the HST/ACS COSMOS field, which yields the highest-quality convergence map of this field to date. Conclusions. We find the proposed approach to be superior to previous algorithms, scalable, providing uncertainties, and using a fully non-Gaussian prior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available