4.7 Article

Transcriptomic profiling of miR-203a inhibitor and miR-34b-injected zebrafish (Danio rerio) validates oil-induced neurological, cardiovascular and eye toxicity response pathways

Journal

AQUATIC TOXICOLOGY
Volume 254, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.aquatox.2022.106356

Keywords

RNA sequencing; microRNA; Early life stage; Eye size

Ask authors/readers for more resources

The global sequencing of microRNA (miRNA) and mRNA expression profiles in fish exposed to crude oil revealed consistently dysregulated miRNAs with predicted roles in cardiovascular, neurological, and visually-mediated pathways. Two miRNAs, miR-203a and miR-34b, were found to be primary targets of crude oil. Inhibition of miR-203a and overexpression of miR-34b resulted in neurological and eye toxicity responses similar to those caused by oil exposure.
The global sequencing of microRNA (miRNA; miR) and integration to downstream mRNA expression profiles in early life stages (ELS) of fish following exposure to crude oil determined consistently dysregulated miRNAs regardless of the oil source or fish species. The overlay of differentially expressed miRNAs and mRNAs into in silico software determined that the key roles of these miRNAs were predicted to be involved in cardiovascular, neurological and visually-mediated pathways. Of these, altered expression of miRNAs, miR-203a and miR-34b were predicted to be primary targets of crude oil. To better characterize the effect of these miRNAs to down-stream transcript changes, zebrafish embryos were microinjected at 1 h post fertilization (hpf) with either a miR-203a inhibitor or miR-34b. Since both miRs have been shown to be associated with aryl hydrocarbon receptor (AhR) function, benzo(a)pyrene (BaP), a potent AhR agonist, was used as a potential positive control. Tran-scriptomic profiling was conducted on injected and exposed larvae at 7 and 72 hpf, and eye morphology assessed following exposure at 72 hpf. The top predicted physiological system disease and functions between differentially expressed genes (DEGs) shared with miR-203a inhibitor-injected and miR-34b-injected embryos were involved in brain formation, and the development of the central nervous system and neurons. When DEGs of miR-203a inhibitor-injected embryos were compared with BaP-exposed DEGs, alterations in nervous system develop-ment and function, and abnormal morphology of the neurosensory retina, eye and nervous tissue were predicted, consistent with both AhR and non-AhR pathways. When assessed morphologically, the eye area of miR-203a inhibitor and miR-34b-injected and BaP-exposed embryos were significantly reduced. These results suggest that miR-203a inhibition and miR-34b overexpression contribute to neurological, cardiovascular and eye toxicity responses that are caused by oil and PAH exposure in ELS fish, and are likely mediated through both AhR and non-AhR pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available