4.7 Article

Direct Z-scheme ZnIn2S4 spheres and CeO2 nanorods decorated on reduced-graphene-oxide heterojunction photocatalysts for hydrogen evolution and photocatalytic degradation

Journal

APPLIED SURFACE SCIENCE
Volume 607, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2022.155087

Keywords

ZnIn2S4/rGO/CeO2; Hydrogen generation; Hydrothermal synthesis; Heterojunction photocatalysts; Tetracycline degradation

Ask authors/readers for more resources

Nanocomposite photocatalysts have been used to produce clean hydrogen and degrade organic pollutants. This study presents a ternary composite photocatalyst that outperforms traditional catalysts in terms of hydrogen evolution and organic pollutant degradation. The improved efficiency of the composite is attributed to the synergistic effect of the electron transfer bridge and the quick and efficient separation of photoinduced charge carriers.
Nanocomposite photocatalysts can potentially produce clean hydrogen (H-2) and degrade organic pollutants such as tetracycline (TC). We present hydrothermally synthesized ternary composites of ZnIn2S4-CeO2 implanted into reduced graphene oxide (rGO) layers that outperform typical, expensive catalysts used in the hydrogen evolution reaction (HER). The structural morphology of the composite along with its H2 photocatalytic production and TC degradation ability are evaluated. The results reveal that the ZnIn2S4/rGO/CeO2 heterojunctions demonstrate higher photocatalytic activity for H2 generation and TC degradation than their bare and binary counterparts. The higher efficiency of the ZnIn2S4 -rGO-CeO2 composite is attributable to the synergetic effect of rGO as an electron (e(-))-transfer bridge, as evidenced by the photocurrent density and photoluminescence results. The ZnIn2S4/rGO/CeO2 ternary catalyst absorbs a wide range of wavelengths, diffuses and separates the photoinduced charge carriers quickly and efficiently, and slowly recombines e(-) and h(+). The generated ternary composite material is then used to demonstrate plausible photocatalytic HER and degradation processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available