4.7 Article

BiOBr microspheres anchored with Cu2O nanoparticles and rGO: A Z-scheme heterojunction photocatalyst for efficient reduction of Cr(VI) under visible light irradiation

Journal

APPLIED SURFACE SCIENCE
Volume 609, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2022.155247

Keywords

Cu2O; rGO; BiOBr; Z-scheme heterojunction; Synergy effect; Photocatalysis; Cr(VI) reduction

Ask authors/readers for more resources

In this study, a novel composite photocatalyst was prepared to achieve efficient photocatalytic reduction of hexavalent chromium. The catalyst showed good structural stability and high photocatalytic activity, allowing for rapid removal of Cr(VI) from water under mild conditions.
Photocatalytic reduction of hexavalent chromium (Cr(VI)) is an effective way to reduce its environmental risk. However, it remains a challenge to achieve a high removal rate in mild conditions. In order to efficiently remove Cr(VI) from water, a novel Z-scheme heterojunction composite photocatalyst rCB-20 (Cu2O/rGO/BiOBr, 20% Cu2O) was successfully prepared using a simple two-step strategy in this work. The characterizations of the catalyst show that the Z-scheme heterojunction formed between Cu2O and BiOBr is favorable for facilitating the separation of photogenerated carriers. The existence of rGO can reduce the resistance of electron transport. Therefore, the composite photocatalyst exhibits a very high photocatalytic activity in the photoreduction of Cr (VI). For example, using it to completely remove Cr(VI) with a concentration of 20 mg center dot L-1 in the pH = 4 solution only requires 40 min. Even the complete removal of the same concentration of Cr(VI) in neutral water at pH 7 does not take more than 90 min. Meanwhile, it possesses a high stability in catalytic activity and structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available