4.6 Article

Large imprint in epitaxial 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 thin films for piezoelectric energy harvesting applications

Journal

APPLIED PHYSICS LETTERS
Volume 121, Issue 18, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0115777

Keywords

-

Funding

  1. Slovenian Research Agency [P2-0091, J2-2510, N2-0187, N2-0149, P1-0125]
  2. Swiss National Science Foundation [192047]
  3. Strategy AV21 framework of the Czech Academy of Sciences, programme Efficient Energy Conversion and Storage
  4. Region Hauts-de-France (Project TERRA)
  5. European Union [778072, 872631]

Ask authors/readers for more resources

Tuning and stabilizing large imprint in ferroelectric thin films is crucial for designing micro-electromechanical devices. This study demonstrates the influence of epitaxial strain on the imprint and properties of PMN-33PT films grown on different substrates, and highlights the potential for maximizing the figure of merit in piezoelectric devices.
Tuning and stabilizing a large imprint in epitaxial relaxor ferroelectric thin films is one of the key factors for designing micro-electromechanical devices with an enhanced figure of merit (FOM). In this work, epitaxial 500 nm-thick 0.67Pb(Mg1/3Nb2/3)O-3-0.33PbTiO(3) (PMN-33PT) films, free from secondary phases and with extremely low rocking curves (FWHM < 0.05 & DEG;), are grown on ScSmO3 (SSO) and DyScO3 (DSO) substrates buffered with SrRuO3 (SRO). The PMN-33PT is observed to grow coherently on SSO substrates (lattice mismatch of -0.7%), which is c-axis oriented and exhibits large tetragonality compared to bulk PMN-33PT, while on DSO substrates (lattice mismatch of -1.9%), the PMN-33PT film is almost completely relaxed and shows reduced tetragonality. Due to the compressive epitaxial strain, the fully strained PMN-33PT film displays typical ferroelectric P-E hysteresis loops, while the relaxed sample shows relaxor-like P-E loops. Samples present large negative imprints of about -88.50 and -49.25 kV/cm for PMN-33PT/SRO/SSO and PMN-33PT/SRO/DSO, respectively, which is more than threefold higher than the coercive field. The imprint is induced by the alignment of defect dipoles with the polarization and is tuned by the epitaxial strain. It permits the stabilization of a robust positive polarization state (P-r & SIM; 20 mu C/cm(2)) and low dielectric permittivity (< 700). In addition, the relaxed PMN-33PT film shows improved piezoelectric properties, with a 33% enhancement in d(33,eff) relative to the fully strained sample. The obtained low dielectric permittivity and the high piezoelectric coefficients at zero electric field in the studied PMN-33PT films hold great promise to maximize the FOM toward applications in piezoelectric devices. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available