4.7 Article

Laccase multi-point covalent immobilization: characterization, kinetics, and its hydrophobicity applications

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 107, Issue 2-3, Pages 719-733

Publisher

SPRINGER
DOI: 10.1007/s00253-022-12352-9

Keywords

Laccase; Covalent immobilization; Immobead 150P; Thermodynamics; Wood hydrophobization; Grafting

Ask authors/readers for more resources

In this study, it was found that the multi-point covalently immobilized laccase from Myceliophthora thermophila on the modified immobilized carrier (Immobead 150P) showed the best immobilization characteristics, retaining 95% of its initial activity after 10 cycles of operation at pH 3.0 and temperature 70 degrees C. The thermodynamic parameters of thermal inactivation demonstrated the positive impact of immobilization. The immobilized enzyme exhibited enhanced stability in alkaline conditions and the ability to provide hydrophobic properties to wood.
Laccase from Myceliophthora thermophila was immobilized using one-point and multi-point covalent attachment on both a native and a modified new commercial epoxy carrier (Immobead 150P). After 10 cycles of operation at pH 3.0 and temperature 70 degrees C, the multi-point covalently immobilized laccase on the modified Immobead 150P performed best in terms of immobilization characteristics, retaining 95% of its initial activity. Thermodynamic parameters of thermal inactivation emphasized the positive impact of the immobilization procedure. At 50 degrees C, the immobilized and free enzyme activity levels dropped by 27 and 73%, respectively, after 48 h of incubation. The immobilized enzyme enhanced its stability in alkaline conditions, resuming 95% of its original activity after 3 h at pH 9.0. Immobilization reduced substrate affinity because the free laccase's K-m value was lower than that of the immobilized laccase. Finally, the application of immobilized laccase in an innovative wood treatment process was tested by grafting lauryl gallate (LG) in order to provide hydrophobic properties to the wood. The results showed a relative water contact angle of 85.7% for treated wood, whereas the control showed only 26.6%, after 4 min of contact between water and beechwood surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available