4.5 Article

Using extended reality (XR) for medical training and real-time clinical support during deep space missions

Journal

APPLIED ERGONOMICS
Volume 106, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apergo.2022.103902

Keywords

Extended reality; Deep space missions; Medical training; Clinical guidance; Clinical decision support

Ask authors/readers for more resources

This study aims to develop a framework for guiding the development of XR-based medical training and guidance for astronauts. Through a mixed-methods approach, a standard taxonomy of XR capabilities was developed and supplemented by identifying models and taxonomies from related fields. This initial framework, along with the identified XR capabilities, can be used to structure the development of medical training and guidance for deep space exploration missions.
Medical events can affect space crew health and compromise the success of deep space missions. To successfully manage such events, crew members must be sufficiently prepared to manage certain medical conditions for which they are not technically trained. Extended Reality (XR) can provide an immersive, realistic user experience that, when integrated with augmented clinical tools (ACT), can improve training outcomes and provide real-time guidance during non-routine tasks, diagnostic, and therapeutic procedures. The goal of this study was to develop a framework to guide XR platform development using astronaut medical training and guidance as the domain for illustration. We conducted a mixed-methods study-using video conference meetings (45 subject-matter experts), Delphi panel surveys, and a web-based card sorting application-to develop a standard taxonomy of essential XR capabilities. We augmented this by identifying additional models and taxonomies from related fields. Together, this taxonomy of taxonomies, and the essential XR capabilities identified, serve as an initial framework to structure the development of XR-based medical training and guidance for use during deep space exploration missions. We provide a schematic approach, illustrated with a use case, for how this framework and materials generated through this study might be employed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available